

Abstracts

Analysis of Single and Coupled Microstrip Lines on Anisotropic Substrates Using Differential Matrix Operators and the Spectral-Domain Method

Y. Chen and B. Beker. "Analysis of Single and Coupled Microstrip Lines on Anisotropic Substrates Using Differential Matrix Operators and the Spectral-Domain Method." 1993 Transactions on Microwave Theory and Techniques 41.1 (Jan. 1993 [T-MTT]): 123-128.

In this paper, a differential matrix operator technique is presented to simplify the formulation of boundary-value problems for open millimeter-wave integrated circuits (MIC's) which use anisotropic substrates. The spectral-domain method is applied to analyze the propagation characteristics of single and coupled microstrip lines printed on anisotropic substrates whose properties are described by both $[\epsilon]$ and $[\mu]$ tensors. In addition to considering the permittivity and permeability as a uniaxial or biaxial tensor, the effects of coordinate misalignment between the principal axes of $[\epsilon]$ and those of the structure in the transverse plane are also included. It is shown that the misalignment in $[\epsilon]$ and the presence of the $[\mu]$ tensor has a significant effect on the dispersive properties of these two structures.

[Return to main document.](#)